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Abstract. This paper studies the quasi-static stability analysis of fiber-reinforced viscoelastic composite plates
subjected to in-plane edge load systems. The study is based on a unified shear-deformable plate theory. This theory
enables the trial and testing of different through-thickness transverse shear-strain distributions and, among them,
strain distributions that do not involve the undesirable implications of the transverse shear correction factors.
Using the method of effective moduli solves the equations governing the stability of simply supported fiber-
reinforced viscoelastic composite plates. The solution concerns the determination of the critical in-plane edge
loads associated with the asymptotic instability of plates. In a study of this problem the general quasi-static stability
solutions are compared with those based on the classical, first-order and sinusoidal transverse shear-deformation
theories. Numerical applications using higher-order shear-deformation theory are presented and comparisons with
the results of other theories are formulated.
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1. Introduction

Advanced fiber-reinforced composites have gained increasing attention in recent years. This
attention is due to their widespread use in modern aerospace transportation systems and in
other areas of high performance. The composite material structures exhibit time-dependent
properties which could be modeled by a linear (or nonlinear) constitutive law. In addition,
these composite material structures exhibit a weak rigidity in transverse shear that requires
the incorporation of transverse shear-deformation effects.

Elastic properties of multi-phase composite materials have been studied extensively.
Among these studies are those dealing with bounds on the elastic behaviour and predicted
properties of composites of relatively simple structures. The upper and lower bounds of stiff-
ness of two-phase and many-phase composite materials have been obtained in terms of volume
fraction of constituents (see, e.g., [1] and [2]). Bounds and expressions for the effective elastic
moduli of materials reinforced by parallel hollow circular fibers in hexagonal or random
arrays have also been derived by a variational method [1]. Furthermore, bounds on three
independent effective elastic moduli of an n-phase fiber-reinforced composite of arbitrary
transverse phase geometry, plane-strain bulk modulus, transverse shear modulus and shear
modulus in plane parallel to fibers, have been derived in terms of phase volume fractions [3].
For viscoelastic heterogeneous media of several discrete linear viscoelastic phases with known
stress-strain relations, it has been shown that the effective relaxation and creep functions can
be obtained by the corresponding principle of the theory of linear viscoelasticity. In some
cases explicit results in terms of general linear viscoelastic matrix properties have been given,
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thus permitting direct use of experimental information [4]. In a review by Ahmed and Jones
[5] of particulate reinforcement theories for polymer composites, it was concluded that the
size, shape, distribution, and interfacial adhesion of the inclusions affected the macroscopic
behaviour.

The stability of rectangular, viscoelastic, orthotropic plates subjected to biaxial compres-
sion was analyzed by Wilson and Vinson [6]. In their analysis, the equations governing the sta-
bility were obtained by using the quasi-elastic approximation, which overlooks the hereditary
material behaviour. Kim and Hong [7] examined the viscoelastic-buckling load of sandwich
plates with cross-ply faces. Huang [8] studied the viscoelastic buckling and post-buckling
of circular cylindrical laminated shells. These works, as in [6], were conducted within the
framework of the quasi-elastic analysis, i.e., the buckling load and post-buckling deflection
are obtained by direct substitution of time-varying properties in the elastic formulations of the
problem. Pan [9] analyzed the dynamic response problem of isotropic viscoelastic plates by
extending, for this case, Mindlin’s shear-deformation plate theory. Librescu and Chandiramani
[10] presented a paper that deals with the dynamic stability analysis of transversely isotropic
viscoelastic plates subjected to in-plane biaxial edge-load systems. In their derivation of the
associated governing equations they used a Boltzmann hereditary constitutive law and, in
addition, transverse shear deformation, transverse normal stress and rotatory inertia effects
were incorporated.

This paper deals with a quasi-static stability analysis of fiber-reinforced viscoelastic rect-
angular plates subjected to in-plane edge-load systems. In deriving the governing equations,
the effective-moduli method was used and, in addition, transverse shear-deformation effects
were incorporated. Numerical results of critical buckling loads are presented, comparisons
with the existing literature are made, and conclusions are formulated.

2. Theory and formulation

The simplest case of a two-phase composite represents rigorous upper and lower bounds on
Young’s modulus for a given volume fraction of one phase. The geometry of such model
structure is shown in Figure 1. The composite can contain laminations as shown in Figure 1
or it can be made of continuous fibers; in either case the strain is the same in each phase. For
an elastic material with one of these structures, Young’s modulus of the composite is given
by the relation Ec = γ1E1 + γ2E2, in which E1 and E2 refer to Young’s moduli of phase 1

Figure 1. A fiber-reinforced viscoelastic rectangular plate.
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and phase 2, respectively. Also γ1 and γ2 refer to the volume fraction of the two phases with
γ1 + γ2 = 1.

The fiber-reinforced two-phase composite plate as shown in Figure 1 is assumed to be
of uniform thickness h and made of a material composed of two components. One of these
(phase 1) is an elastic material with modulus of elasticity Er and Poisson’s ratio νr . The other
component (phase 2) may possess either elastic properties with modulus Ef and Poisson’s ra-
tio νf or the properties of a linear isotropic viscoelastic material characterized by the modulus
of bulk K which is assumed to be constant and the dimensionless parameter ω̄. So, phase 1
will serve as the reinforcement, while phase 2 will play the role of the filler.

The rectangular Cartesian planform co-ordinates x and y are introduced in the deformation
analysis of the present plate. The considered plate is bounded by the coordinate planes x = 0,
a and y = 0, b. The reference surface is the middle surface of the plate defined by z = 0, and
z denotes the thickness co-ordinate measured from the undeformed middle surface.

The displacements of a material point located at (x, y, z) in the plate may be written as (see
[11]):

u1 = u − z
∂w

∂x
+ �(z)ϕ1, u2 = v − z

∂w

∂y
+ �(z)ϕ2, u3 = w, (1)

where (u1, u2, u3) are the displacements corresponding to the co-ordinate system and are
functions of the spatial co-ordinates; (u, v,w) are the displacements along the axes x, y and
z, respectively, and ϕ1 and ϕ2 are the rotations about the y- and x-axes. All of the general-
ized displacements (u, v,w,ϕ1,ϕ2) are functions of (x, y). The shape function �(z) is to be
specified a posteriori [12]. It may be chosen such that

� ′(z) = 0 at z = ±h/2, (2a)

and/or∫ +h/2

−h/2
�(z)dz = 0. (2b)

The first condition in (2) means that the transverse shear strain vanishes on the bounding
planes z = ±h/2. The shear deformation theory that satisfies this condition does not require
any shear-correction factors. In general, the second condition in (2) may be satisfied for most
two-dimensional theories.

The six strain components compatible with the displacement field in (1) are

εi = ε0
i + zκi + �(z)ηi , (i = 1, 2, 6),

ε3 = 0, εj = � ′(z) ε0
j , (j = 4, 5),

(3)

where

ε0
1 = ∂u

∂x
, ε0

2 = ∂v

∂y
, ε0

4 = ϕ2, ε0
5 = ϕ1, ε0

6 = ∂v

∂x
+ ∂u

∂y
,

κ1 = −∂2w

∂x2
, κ2 = −∂2w

∂y2
, κ6 = −2

∂2w

∂x∂y
,

η1 = ∂ϕ1

∂x
, η2 = ∂ϕ2

∂y
, η6 = ∂ϕ2

∂x
+ ∂ϕ1

∂y
.

(4)



78 A.M. Zenkour

It becomes clear therefore that, through its derivative, the a posteriori specified function �(z)

will determine the through-the-thickness trial distribution of the transverse shear strain.
The constitutive law that relates stresses and strains in a linear viscoelastic fiber-reinforced

material may be expressed in hereditary integral form in the time domain and in the poly-
nomial form in the Laplace domain. For a plate, thin or moderately thick, the normal stress
in the thickness direction is small and negligible. The general constitutive equations may be
simplified by neglecting this normal stress. The simplified constitutive law is



σ1

σ2

σ4

σ5

σ6




=




c̄11 c̄12 0 0 0
c̄22 0 0 0

c̄44 0 0
c̄55 0

symm. c̄66







ε1

ε2

ε4

ε5

ε6




, (5)

where c̄ij are the compliance constants, which depend on the material properties of the two
components of the plate. Then

c̄11 = Ēx

1 − ν̄xy ν̄yx

, c̄12 = ν̄xyĒy

1 − ν̄xy ν̄yx

= ν̄yxĒx

1 − ν̄xy ν̄yx

, c̄22 = Ēy

1 − ν̄xy ν̄yx

,

c̄44 = Ḡyz, c̄55 = Ḡxz, c̄66 = Ḡxy,

(6)

where Ēx and Ēy are Young’s moduli; ν̄xy and ν̄yx gre Poisson’s ratios; and Ḡxy, Ḡyz and
Ḡxz are shear moduli. In the case in which the filler (phase 2) is a viscoelastic material,
the compliance constants c̄ij are said to be the effective relaxation kernels. Young’s moduli,
Poisson’s ratios and shear moduli are defined in Appendix A in terms of some known kernels
ḡχ constructed on the basis of the kernel ω̄ (see [13]). So the effective relaxations kernels c̄ij

can always be represented in the form c̄ij = cij (χ)ḡχ, where cij (χ) are constants.

3. Governing equations

Let the upper surface of the plate (z = h/2) be subjected to a transverse distribution load
q(x, y). Let there be distributed compressive in-plane forces S1 and S2 (per unit length) acting
on the mid-surface of the plate.

The principle of virtual displacements for the present problem may be expressed as follows:

0 =
∫

�

[∫ +h/2

−h/2
[σ1δε1 + σ2δε2 + ...]dz +

(
S1

∂w

∂x

∂

∂x
+ S2

∂w

∂y

∂

∂y
− q

)
δw

]
d�, (7)

or

0 = ∫
�

[
N1δε

0
1 + N2δε

0
2 + N6δε

0
6 + M1δκ1 + M2δκ2 + M6δκ6 + Ma

1 δη1 + Ma
2 δη2

+Ma
6 δη6 + Qa

4δε
0
4 + Qa

5δε
0
5 +

(
S1

∂w

∂x

∂

∂x
+ S2

∂w

∂y

∂

∂y
− q

)
δw

]
d�,

(8)

where Ni and Mi are the basic components of stress resultants and stress couples, Ma
i are

additional stress couples associated with the transverse shear effects and Qa
l are transverse-

shear-stress resultants. Here Ni and Mi etc., can be expressed as

{Ni,Mi,M
a
i } = ∫ +h/2

−h/2 {1, z,�(z)}σidz,

Qa
l = ∫ +h/2

−h/2 � ′(z)σldz, (i = 1, 2, 6; l = 4, 5).
(9)



Buckling of fiber-reinforced viscoelastic composite plates using various plate theories 79

The governing equilibrium equations can be derived from (8) by integrating the displace-
ment gradient in εi by parts and setting the coefficients of δu, δv, δw, δϕ1, and δϕ2 to zero
separately. Thus one obtains

δu : ∂N1

∂x
+ ∂N6

∂y
= 0, (10)

δv : ∂N6

∂x
+ ∂N2

∂y
= 0, (11)

δw : ∂2M1

∂x2
+ 2

∂2M6

∂x ∂y
+ ∂2M2

∂y2
+ q + ∂

∂x

(
S1

∂w

∂x

)
+ ∂

∂y

(
S2

∂w

∂y

)
= 0, (12)

δϕ1 : ∂Ma
1

∂x
+ ∂Ma

6

∂y
− Qa

5 = 0, (13)

δϕ2 : ∂Ma
6

∂x
+ ∂Ma

2

∂y
− Qa

4 = 0. (14)

By using (5) in (9), the force and moment resultants of the theory can be related to the total
strains to yield the following constitutive equations:

Ni = Aij ε0
j + Bij κj + Ba

ij ηj ,

Mi = Bij ε0
j + Dij κj + Da

ij ηj ,

Ma
i = Ba

ij ε0
j + Da

ij κj + Fa
ij ηj ,

(i, j = 1, 2, 6), (15a)

and

Qa
l = Aa

ll ε
0
l , (l = 4, 5). (15b)

The following definitions are used for the stiffnesses in the above equation:

{Aij , Bij ,Dij } = ∫ +h/2
−h/2 c̄ij {1, z, z2}dz,

{Ba
ij ,D

a
ij , F

a
ij } = ∫ +h/2

−h/2 c̄ij�(z){1, z,�(z)}dz,

Aa
ll = ∫ +h/2

−h/2 c̄ll[� ′(z)]2dz, (i, j = 1, 2, 6; l = 4, 5).

(16)

Note that, in addition to the above equilibrium and constitutive equations, the essential and
natural boundary conditions may be obtained easily from (8) and they are given in Table 1:

4. Analytical solutions

In this approach, we express the generalized displacements so as to satisfy the boundary
conditions representing simple support:

v = w = ϕ2 = N1 = M1 = Ma
1 = 0 at x = 0, a,

u = w = ϕ1 = N2 = M2 = Ma
2 = 0 at y = 0, b.

(17a)
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Table 1. Boundary conditions.

Essential Natural

u N1nx + N6ny

v N6nx + N2ny

w
(

∂M1
∂x

+ ∂M6
∂y

+ S1
∂w
∂x

)
nx +

(
∂M6
∂x

+ ∂M2
∂y

+ S2
∂w
∂y

)
ny

∂w
∂x M1nx + M6ny
∂w
∂y M6nx + M2ny

ϕ1 Ma
1 nx + Ma

6 ny

ϕ2 Ma
6 nx + Ma

2 ny

The following representation for the displacement quantities is appropriate in the analysis
of the present problem:



u

v

w

ϕ1

ϕ2




=
∞∑

m=1

∞∑
n=1




Umn cos(λx) sin(µy)

Vmn sin(λx) cos(µy)

Wmn sin(λx) sin(µy)

Xmn cos(λx) sin(µy)

Ymn sin(λx) cos(µy)




, (17b)

where λ = mπ/a and µ = nπ/b and Umn, Vmn, Wmn, Xmn, and Ymn are arbitrary para-
meters. The above representation is appropriate in dealing with the (quasi-static) compressive
buckling problem. The simplest case, to derive some results which concern the buckling of
viscoelastic rectangular plates, is obtained when the forces S1 and S2 are given throughout the
plate and the transversal load term is dropped (q = 0). Assuming that there is a given ratio
between these forces, so that S1 = −S0/P (t) and S2 = α S1, we get

(P (t)[L] − S0[S]) {�} = {0}, (18)

where P(t) is a transient function accounting for the viscoelastic response of the buckling
problem and {�} denotes the column

{�}T = {Umn, Vmn,Wmn,Xmn, Ymn}. (19)

The elements Lij = Lji of matrix [L] are given by:

L11 = A11λ
2 + A66µ

2,

L12 = λµ(A12 + A66),

L13 = 0,

L14 = Ba
11λ

2 + Ba
66µ

2,

L15 = λµ(Ba
12 + Ba

66),

L22 = A66λ
2 + A22µ

2,

L23 = 0,

L24 = L15,

L25 = Ba
66λ

2 + Ba
22µ

2,
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L33 = D11λ
4 + 2λ2µ2(D12 + 2D66) + D22µ

4,

L34 = −λ[Da
11λ

2 + (Da
12 + 2Da

66)µ
2],

L35 = −µ[(Da
12 + 2Da

66)λ
2 + Da

22µ
2],

L44 = Fa
11λ

2 + Fa
66µ

2 + Aa
55,

L45 = λµ(F a
12 + Fa

66),

L55 = Fa
66λ

2 + Fa
22µ

2 + Aa
44.

All elements of matrix [S] are zeros, except S33 = λ2 + αµ2. For non-trivial solutions of
(20), the following determinant should be zero

|P(t)[L] − S0[S]| = 0. (20)

This equation gives the buckling loads. Note that the assumed buckling of the plate is possible
only for definite values of S0. The smallest of these values determines the desired critical
value.

4.1. BIAXIAL COMPRESSION OF A VISCOELASTIC PLATE

For a viscoelastic composite rectangular plate subjected to the same magnitude of uniform
compressive forces S1 and S2 on both edges (i.e., biaxial compression), we may calculate the
buckling load using (20) with α = 1.

4.2. UNIAXIAL COMPRESSION OF A VISCOELASTIC PLATE

When the viscoelastic composite rectangular plate is subjected to uniform compressive load
S1 on the edges x = 0 and x = a, we may calculate the buckling load using (20) with α = 0.

4.3. BUCKLING OF A VISCOELASTIC PLATE UNDER COMBINED BENDING AND

COMPRESSION

The problem becomes more involved if either of the forces S1 or S2 varies along one coordinate
direction. Let us consider a simply supported viscoelastic rectangular plate with distributed in-
plane forces applied in the middle plane of the plate on sides x = 0, a only, i.e., S2 = 0. The
distribution of the applied force is given, for example, by

S1 = − S0

P(t)

(
1 − c

y

b

)
, (21)

where c is a numerical factor. In this case (18) has variable coefficients, but the general conclu-
sion remains the same. The elements of [L] and [S] are still the same except S33 = λ2(1−c/2).
By changing the factor c one obtains various particular cases. For example, c = 0 corresponds
to the case of uniformly distributed compressive force (S1 = −S0/P (t), α = 0) and for c =
2 we obtain the case of pure bending. All other values give a combination of bending and
compressive (c < 2) or tension (c > 2).

4.4. THE SHAPE FUNCTION �(z)

It is known that the classical plate theory based on the Love-Kirchhoff assumptions is only
adequate for predicting the gross behaviour of a thin plate [14], [15, pp. 76–138], [16]). When
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the structures are rather thick, the transverse shear-deformation effect has to be incorporated.
In such cases more refined theories are needed (see, e.g., [16–19], [20, pp. 353–371], [21–23],
[24, pp. 351–360]).

Most of the solutions shown were based on choices of the shape function �(z) that are
consistent with the so-called higher-order shear-deformation plate theory (HPT). For com-
parison purposes, however, two more choices of the shape functions are also used. These
are consistent with the so-called first-order (uniform) shear-deformation plate theory (FPT)
and a shear-deformable theory that uses a shape function of sinusoidal type (SPT). In some
cases, involving zero shape function, the classical plate theory (CPT) has also been used
for comparison purposes. In more detail, the shape function employed for each theory is as
follows:

CPT : �(z) = 0,

FPT : �(z) = z,

SPT : �(z) = h
π

sin
(

π z
h

)
,

HPT : �(z) = z

[
1 − 1

3

(
z

h/2

)2
]

.

In the first-order shear-deformation plate theory (FPT), the in-plane displacements are
expanded up to the first term in the thickness coordinate, and the relations of normals to
the mid-surface are assumed to be independent of the transverse deflection. For this theory we
have

Bij = Ba
ij = 0, Da

ij = Fa
ij = Dij , Aa

ll = hKlc̄ll, (i, j = 1, 2, 6; l = 4, 5). (22)

Note that the first condition in (2) is not satisfied; then the FPT yields a constant value of
transverse shearing strain through the thickness of the plate, and thus requires shear-correction
factors Kl in order to ensure the proper amount of transverse energy. The actual values of
shear-correction coefficients of the present FPT are K4 = K5 = 5/6.

The HPT allows for a quadratic distribution of transverse shearing strain through the
thickness of the plate by assuming a cubic expansion of the in-plane displacements in the
thickness coordinate. The forms of the assumed displacement functions for both HPT and
SPT are simplified by enforcing traction-free boundary conditions at the top and bottom sur-
faces of the plate. No shear-correction factors are needed for both theories, because a correct
representation of the transverse shearing strain is given.

For the SPT, as well as for the HPT, the condition given in (2) must be satisfied. Also for
the two theories, as in the FPT, we have Bij = Ba

ij = 0. The FPT, SPT and HPT contain the
same number of dependent variables. Those that are variationally consistent with both SPT
and HPT involve additional higher-order stress resultants and material stiffness coefficients
compared to the FPT.

The classical theory of thin plates (CPT) assumes that straight lines normal to the mid-
surface before deformation remain straight and normal to the mid-surface after deforma-
tion, implying that transverse normal and shearing effects are negligible. For this theory, the
buckling loads may be simply given as

S0 = 1

S33

[
D11λ

4 + 2λ2µ2(D12 + 2D66) + D22µ
4
]
P(t). (23)
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For the sake of completeness and comparison, the analytical solution for the stability
problem of thin, isotropic, simply supported, rectangular elastic plates is presented here as
given in most literature (see, e.g., [24, pp. 351–360]):

S1
m2π2

a2
+ S2

n2π2

b2
= D

(
m2π2

a2
+ n2π2

b2

)2

, (24)

where m and n are the mode numbers and

D = Erh
3

12(1 − ν2
r )

, (25)

is the flexural rigidity of the fully elastic plate with Er and νr as Young’s modulus and
Poisson’s ratio.

5. Generalized of Illyushin’s approximation method

To solve the quasi-static problem of the linear theory for a viscoelastic composite material,
we can use the method of reducing the non-homogeneous isotropic viscoelastic problem to
a sequence of successive homogeneous anisotropic ones, as is done in the elastic case (see
[13]).

For all theories considered, one can put (20) in the following form

S0 = F(m, n, ω̄)P (t). (26)

Thus, for each choice of m and n there is a corresponding unique value of S0. The critical
buckling load is the smallest of S0(m, n). For a given plate this value is dictated by a particular
combination of the values of m and n, values of α, ζ, ω̄, and γ, plate geometry, and material
properties.

In elastic composites F is a function of m, n and ω̄, while in viscoelastic composites it is
an operator function of m, n and the time t. According to Illyushin’s approximation method
[13, 25, 26], the function F can be represented in the form

F(m, n, ω̄) =
6∑

j=1

fj (m, n)�j(ω̄), (27)

where �j (ω̄) are some known kernels, constructed on the basis of the kernel ω̄ and may be
chosen in the form

�1 = 1, �2 = ω̄, �3 = �̄ = 1

ω̄
, �4 = ḡχ1, �5 = ḡχ2, �6 = ḡχ3 . (28)

The coefficients fj (m,n) are determined from the following system of algebraic equations

6∑
j=1

φij fj (m, n) = �i(m, n), i = 1, 2, ..., 6, (29)

where

φij =
∫ 1

0
�i(ω̄)�j(ω̄)dω̄, �i(m, n) =

∫ 1

0
�i(ω̄) F (m, n, ω̄)dω̄. (30)
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The viscoelastic solution may now be used to obtain explicit formulae for S0 as functions
of the mode numbers (m, n) and time t. Then,

S0(m, n, ω̄) = f1P(t) + f2
∫ t

0 ω(t − τ)dP(τ) + f3
∫ t

0 �(t − τ)dP(τ)

+f4
∫ t

0 gχ1(t − τ)dP(τ) + f5
∫ t

0 gχ2(t − τ)dP(τ) + f6
∫ t

0 gχ3(t − τ)dP(τ).
(31)

Taking P(t) = P0H(t), where H(t) is the Heaviside’s unit step function,

H(t) =
{

1 if t ≥ 0,

0 if t < 0,
(32)

we observe that the above formula takes the form

S0(m, n, ω̄) = P0[f1H(t) + f2ω(t) + f3�(t) + f4gχ1(t) + f5gχ2(t) + f6gχ3(t)], (33)

where ω(t) ≡ ω̄, �(t) ≡ �̄ and gχi
(t) ≡ ḡχi

, (i = 1, 2, 3) are given in Appendix A.
Assuming an exponential relaxation function

ω(t) = c1 + c2 e−t/ts , (34)

where c1 and c2 are constants that are to be determined, and ts is the relaxation time. With
the help of the Laplace-Carson transform, the functions

∏
(t) and gχi

(t) are given in detail in
Appendix B. They take the following forms:

�(t) = 1

c1

[
1 − c2

c1 + c2
e−c1τ/(c1+c2)

]
, (τ = t/ts), (35)

gχi
(t) = 1

1 + c1χi

[
1 − c2χi

1 + (c1 + c2)χi

e−(1+c1χi)τ/[1+(c1+c2)χi]
]

. (36)

So, the final form of the buckling load in terms of the time parameter τ is

β0(m, n, t) = f1H(t) + f2[c1 + c2e
−τ] + f3

c1

[
1 − c2

c1 + c2
e−c1τ/(c1+c2)

]

+f4 ḡχ1 + f5 ḡχ2 + f6 ḡχ3,

(37)

where β0 = S0/P0 and ḡχi
are given in (36).

6. Comparison and results for viscoelastic composite plates

In this section, results obtained from the current HPT for several example problems are presen-
ted and compared with other theories. The results of the present investigations are given in
Tables 2 and 3 and Figures 2–11. The value of Poisson’s ratio of the reinforcement material
was taken to be νr = 0·3. Note that we will assume in all of the analyzed cases (unless
otherwise stated) that ζ = 10, γ = 0·1, ω̄ = 0·5, c1 = 0·1, c2 = 0·9, and a/h = 10. The
appropriate value of the mode number n to get critical buckling is n = 1. With the help of
the notation β0 = S0/P0, the buckling parameter β (≡ β0a

2/Dπ2), determined as per HPT is
compared with those obtained by SPT, FPT and CPT. Note that the buckling parameter β is
given in terms of the flexural rigidity of the fully-elastic plate D.
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6.1. BUCKLING RESPONSE WITH CONSTANT KERNEL ω̄

When ω̄ takes a constant value, as mentioned in this section, P(t) may be tends to a constant
value P0. In addition, all of the effective relaxation kernels c̄ij are constants. Tables 2 and 3
are devoted to the buckling of viscoelastic composite plates and compare the present HPT
results with those obtained as per SPT, FPT and CPT. Table 2 shows that the critical buckling
loads of the present CPT for fully-elastic plates (γ = 1) are identical to those of Timoshenko
and Gere [24, pp. 351–360] using the analytical solution for the stability problem of thin,
isotropic, simply supported, rectangular elastic plates. In addition, the biaxial (α = 1) and
uniaxial (α = 0) critical buckling loads using CPT are also exactly the same as those obtained
by Lam et al. [27] without any foundation parameters.

Table 2. Non-dimensional critical buckling loads (β) of a reinforced viscoelastic square plate.

α a/h γ = 1 (4·0000)a,b γ = 0·5 (14·0365)a γ = 0 (68·2500)a

FPT SPT HPT FPT SPT HPT FPT SPT HPT

0 2 1·6598 1·6811 1·6760 7·6008 7·6495 7·6364 30·5547 30·8818 30·8009

4 2·9575 2·9626 2·9607 11·5510 11·5606 11·5564 52·1619 52·2351 52·2070

5 3·2637 3·2666 3·2653 12·3330 12·3383 12·3356 56·9989 57·0395 57·0209

10 3·7865 3·7869 3·7866 13·5660 135669 13·5662 65·0404 65·0470 65·0422

20 3·9444 3·9445 3·9444 13·9157 13·9159 13·9157 67·4183 67·4196 67·4184

50 3·9910 3·9910 3·9910 14·0170 14·0171 14·0170 68·1155 68·1157 68·1155

aNumbers in parenthesis based on CPT.
bUniaxial critical buckling load is exactly the same as that obtained by Lam et al. [27].

Table 2. continued

α a/h γ = 1 (2·6667)a,b γ = 0·5 (9·3577)a γ = 0 (45·5000)a

FPT SPT HPT FPT SPT HPT FPT SPT HPT

0·5 2 1·1065 1·1207 1·1173 5·0672 5·0997 5·0909 20·3698 20·5879 20·5339

4 1·9717 1·9751 1·9738 7·7006 7·7070 7·7042 34·7746 34·8234 34·8046

5 2·1758 2·1777 2·1769 8·2220 8·2256 8·2237 37·9992 38·0264 38·0139

10 2·5243 2·5246 2·5244 9·0440 9·0446 9·0441 43·3603 43·3646 43·3615

20 2·6296 2·6297 2·6296 9·2771 9·2773 9·2771 44·9455 44·9464 44·9456

50 2·6607 2·6608 2·6607 9·3447 9·3447 9·3447 45·4104 45·4105 45·4104

aNumbers in parenthesis based on CPT.

Examination of the results depicted in Tables 2 and 3 reveals that, regardless of the con-
sidered values of the factors α and c, results obtained using HPT, SPT and FPT increase
once a/h or/and a/b increase. The variation of results obtained as per HPT and FPT exhibits
appreciable differences that increase when a/h decreases and a/b increases. In contrast to this
behaviour, β determined in the framework of HPT and SPT show small differences between
them, the differences becoming even smaller when β determined as per HPT (for thick and
moderately thick rectangular plates) is compared to its SPT counterpart. So, SPT without using
any shear correction factor gives results very close to HPT and closer than those obtained using
FPT. In all cases, the results increase with the increase of the factors α and c and the maximum
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Table 2. continued

α a/h γ = 1 (2·0000)a,b γ = 0·5 (7·0183)a γ = 0 (34·1250)a

FPT SPT HPT FPT SPT HPT FPT SPT HPT

1 2 0·8299 0·8405 0·8380 3·8004 3·8248 3·8182 15·2773 15·4409 15·4005

4 1·4788 1·4813 1·4804 5·7755 5·7803 5·7782 26·0810 26·1175 26·1035

5 1·6319 1·6333 1·6327 6·1665 6·1692 6·1678 28·4994 28·5198 28·5105

10 1·8932 1·8935 1·8933 6·7830 6·7834 6·7831 32·5202 32·5235 32·5211

20 1·9722 1·9722 1·9722 6·9578 6·9579 6·9579 33·7091 33·7098 33·7092

50 1·9955 1·9955 1·9955 7·0085 7·0085 7·0085 34·0578 34·0579 34·0578

aNumbers in parenthesis based on CPT.
bBiaxial critical buckling load is exactly the same as that obtained by Lam et al. [27].

Table 3. Non-dimensional critical buckling loads (β) of a reinforced viscoelastic rectangular plate under
combined bending and compression (a/h = 5).

c Theory a/b = 0·5 a/b = 1·0 a/b = 2·0
γ = 1 γ = 0·5 γ = 0 γ = 1 γ = 0·5 γ = 0 γ = 1a γ = 0.5b γ = 0a

1·5 CPT 6·2500 38·9894 308·1914 16·0000 56·1460 273·0000 64·0000 203·3413 1092·0000

FPT 5·4777 35·3534 217·1190 13·0549 49·3321 227·9955 30·4545 145·3235 561·3474

SPT 5·4801 35·3631 94·9631 13·0663 49·3533 228·1582 30·8665 145·8143 567·6887

HPT 5·4788 35·3574 94·9445 13·0614 49·3424 228·0836 30·7683 145·6632 566·1340

1·0 CPT 3·1250 19·4947 53·3203 8·0000 28·0730 136·5000 32·0000 101·6707 546·0000

FPT 2·7388 17·6767 47·4646 6·5275 24·6661 113·9977 15·2272 72·6617 280·6737

SPT 2·7400 17·6816 47·4815 6·5332 24·6767 114·0791 15·4333 72·9071 283·8444

HPT 2·7394 17·6787 47·4722 6·5307 24·6712 114·0418 15·3842 72·8316 283·0670

0·5 CPT 2·0833 12·9965 35·5469 5·3333 18·7153 91·0000 21·3333 67·7804 364·0000

FPT 1·8259 11·7845 31·6431 4·3516 16·4440 75·9985 10·1515 48·4412 187·1158

SPT 1·8267 11·7877 31·6544 4·3554 16·4511 76·0527 10·2888 48·6048 189·2296

HPT 1·8263 11·7858 31·6482 4·3538 16·4475 76·0279 10·2561 48·5544 188·7113

0·0 CPTc 1·5625 9·7473 26·6602 4·0000 14·0365 68·2500 16·0000 50·8353 273·0000

FPT 1·3694 8·8383 23·7323 3·2637 12·3330 56·9989 7·6136 36·3309 140·3368

SPT 1·3700 8·8408 23·7408 3·2666 12·3383 57·0395 7·7166 36·4536 141·9222

HPT 1·3697 8·8394 23·7361 3·2653 12·3356 57·0209 7·6921 36·4158 141·5335

aThe mode in which the lowest (critical) buckling occurs is m = 2 for CPT and m = 3 for other shear deformation
theories.
bThe mode in which the lowest (critical) buckling occurs is m = 2 for shear deformation theories. Otherwise the
critical buckling occurs in the first mode (m = 1).
cResults are exactly the same as those obtained by Timoshenko and Gere [24, pp. 351–360] using the analytical
solution, γ = 1.

results occur at γ = 0 (for fully-viscoelastic plates). For a large value of the side-to-thickness
ratio, i.e. a/h = 50, the difference between the values predicted by the shear deformation
theories and CPT is not significant because the plate is essentially very thin. Once again,
Table 3 shows that the uniaxial critical buckling loads (α = 0) of the present CPT for fully-
elastic plates (γ = 1) are identical to the exact values as calculated from the transcendental
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Figure 2. Effect of the volume fraction of fiber-
reinforcement (γ) on the biaxial critical buckling (β)
of a reinforced viscoelastic square plate for different
values of the relaxation function ω̄ (S1 = S2).

Figure 3. Effect of the constitutive parameter (ζ) on
the biaxial critical buckling load (β) of a reinforced
viscoelastic square plate for different values of the
relaxation function ω̄ (S1 = S2).

equation of Timoshenko and Gere [24, pp. 351–360] using the analytical solution for the
stability problem of thin, isotropic, simply supported, rectangular elastic plates.

Figures 2–8 are devoted to the buckling of viscoelastic composite plates using HPT. For
comparison purposes, the results of CPT are also plotted. Figure 2 displays the variation of the
biaxial buckling load β vs. the volume fraction of fiber- reinforcement γ for different values
of the relaxation function ω̄. For all values of ω̄, the obtained results have the same values
for fully-elastic plates (γ = 1). In addition, the maximum critical buckling occurs for fully-
viscoelastic plates (γ = 0), and the results decrease as γ increases. The difference between
the values predicted by HPT and CPT increases with the decrease of γ.

Figure 3 displays the variation of the biaxial buckling load β of the square plate vs. the
constitutive parameter ζ for different values of ω̄. It is clear that the results increase with
increase of ζ and ω̄. For all values of ω̄ the differences of biaxial buckling loads increase as ζ

increases.
Figures 4 and 5 display, respectively, the variation of the uniaxial and biaxial buckling

loads β of rectangular plates vs. the mode number m. For uniaxial buckling of square plates
the critical value occurs, of course, at the first mode number (m = 1). This is not true for an
aspect ratio larger than 1. For example, when a/b = 2 uniaxial critical buckling occurs at m =
2 (see also Table 3), while for a/b = 3 this critical value occurs at m = 3. However, the biaxial
critical buckling load still occurs at the first mode number for all values of the aspect ratio. It
should be noted that the errors between the results predicted by CPT and HPT increase with
an increase of the mode number m.

Figure 6 shows the variation of the biaxial buckling load β vs. the aspect ratio a/b for
different values of ω̄. The critical buckling increases with the increase of the aspect ratio and
the relaxation function. For any value of ω̄ the difference between the critical buckling loads
as predicted by HPT and CPT may be significant, especially for large values of a/b.

In Figure 7, the uniaxial and biaxial critical buckling loads of square plates are plotted
against the side-to-thickness a/h ranging from 4 to 20. It should be noticed that the uni-
axial critical buckling load may be twice the corresponding biaxial one. Also, the difference
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Figure 4. Effect of mode number (m) on the uni-
axial buckling load (β) of a reinforced viscoelastic
rectangular plate (S2 = 0).

Figure 5. Effect of mode number (m) on the bi-
axial buckling load (β) of a reinforced viscoelastic
rectangular plate (S1 = S2).

Figure 6. Effect of the aspect ratio (a/b) on the bi-
axial buckling load (β) of a reinforced viscoelastic
rectangular plate (S1 = S2).

Figure 7. Effect of the side-to-thickness ratio (a/b) on
the uniaxial (S2 = 0) and biaxial (S1 = S2) critical
buckling loads (β) of a reinforced viscoelastic square
plate.

between the critical buckling loads predicted by HPT and CPT may be significant for all values
of the side-to-thickness ratio. This difference increases, of course, when a/h decreases.

Finally, the buckling loads of reinforced viscoelastic rectangular plates under combined
and compression vs. the aspect ratio are illustrated in Figure 8 for various values of the factor c.
Obviously this figure reveals the sensitivity and symmetry of β to the variation of the factor c.

6.2. TIME-DEPENDENCE OF BUCKLING RESPONSE

As particular examples for time-dependence, Figures 9–11 show the history of the biaxial
critical buckling loads for various values of a/b, a/h, and γ, respectively. Some comments
about the graphs are in order. Figure 9 reveals that the biaxial critical buckling load β of
square plates decreases rapidly when 0 ≤ τ < 22 for all values of a/h. For greater values
of τ (τ ≥ 25), β may still be unchanged and this irrespective of the considered a/h ratio. In
Figure 10 one can see the same behaviour of β as in Figure 8 in which β may still be constant
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Figure 8. Effect of the aspect ratio (a/b) on the critical
buckling load (β) of a reinforced viscoelastic rectan-
gular plate under combined bending and compression
(m = 1).

Figure 9. Effect of the time parameter (τ) on the
biaxial critical buckling load (β) of a reinforced vis-
coelastic square plate for different values of the side-
to-thickness ratio (a/h).

Figure 10. Effect of the time parameter (τ) on the
biaxial critical buckling load (β) of a reinforced vis-
coelastic rectangular plate.

Figure 11. Effect of the time parameter (τ) on the
biaxial critical buckling loads (β) of a reinforced
viscoelastic square plate for different values of the
volume fraction of fiber-reinforcement γ (S1 = S2).

for greater values of the volume fraction of τk(τ ≥ 25). Finally, the same behaviour of β vs. τ

may be seen in Figure 11 for different values of γ. Results obtained using HPT and CPT for
the purely viscoelastic case (γ = 0) may be independent of the time parameter when τ ≥ 8.
For γ = 0·5 results may still remain unchanged for τ ≥ 5. As expected, for large values of the
fiber-reinforcement γ, the critical buckling loads are independent of the time parameter.

7. Conclusions

A generalized modal analysis approach is presented for the quasi-static stability analysis
of fiber-reinforced viscoelastic composite plates. The governing equations of the classical,
first-order, sinusoidal and higher-order theories are converted into a single-order system of
equations. An exact eigenvalue buckling analysis of simply supported plates subjected to uni-
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form and linearly varying uniaxial and uniform biaxial edge compression is obtained. Results
compare well with those of the existing literature. As it is well known, the classical plate
theory predicts critical buckling loads that are significantly different from those of the higher-
order theory. The sinusoidal theory and the first-order theory results are very close to each
other. However, the sinusoidal theory, as well as the higher-order theory, does not require the
use of a shear-correction factor.

8. Appendix A

Young’s moduli, Poisson’s ratios and shear moduli used in (6) are presented here (see [13]).
Consider a rectangular plate of parallel-packed parallelepipeds consisting of reinforcement
and filler (see Figure 1). The ratio of the area occupied by reinforcement to the area of
the entire plate at the cross-section x = 0 is denoted by γ (the volume fraction of fiber-
reinforcement). The Young’s moduli are given by

Ēx = γEr + (1 − γ)Ef , Ēy = ErEf

γEf + (1 − γ)Er

. (A.1)

Taking into account the fact that Gr = Er/[2(1 + νr)] and Gf = Ef /[2(1 + νf )], we have

Ḡxy = GrGf

γGf + (1 − γ)Gr

, (A.2)

for the shear modulus Ḡxy . Similarly, the shear moduli Ḡyz and Ḡxz are given by

Ḡyz = Ḡxy, Ḡxz = γGr + (1 − γ)Gf . (A.3)

Let us now determine the Poisson ratio ν̄xy in the case of a stretching of the plate along the
x-axis; we obtain

ν̄xy = γνr + (1 − γ)νf . (A.4)

In the case of a stretching along the y-axis, we have

ν̄yx = [γνr + (1 − γ)νf ]ErEf

[γEr + (1 − γ)Ef ][γEf + (1 − γ)Er ] . (A.5)

Thus, it is obvious from (A.1), (A.4) and (A.5) that the reciprocal relation ν̄xyĒy = ν̄yxĒx is
fulfilled.

The filler material will be characterized by the bulk modulus K of the filler and kernel
ω(t) if the filler possesses viscoelastic properties and the volume does not relax. Note that the
viscoelastic modulus Ef and the corresponding Poisson ratio νf may be given in terms of the
bulk (hydrostatic stress) modulus K and the kernel ω(t), which we will denote as ω̄, by

Ef = 9Kω̄

2 + ω̄
, νf = 1 − ω̄

2 + ω̄
. (A.6)

Substitution of (A.6) in (A.1–A.5) gives

Ēx = Er [γ + 9ζ(1 − γ)(1 − ḡχ1)], (A.7)
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Ēy = 9Erζ

2(1 − γ)χ2
(1 − ḡχ2), (A.8)

Ḡxy = Ḡyz = 3Erζ

2(1 − γ)χ3
(1 − ḡχ3), (A.9)

Ḡxz = Er

[
γ

2(1 + νr)
+ 3

2
(1 − γ)ζω̄

]
, (A.10)

ν̄xy = γνr − (1 − γ)

(
1 − 3

2
ḡχ1

)
, (A.11)

and

ν̄yx = 9ζν̄xy

[1 − γ + 9ζγ(1 − ḡχ1)][9ζ(1 − γ) + γ(1 + �̄)] . (A.12)

The notations

ζ = K

Er

, �̄ = 1

ω̄
,and ḡχi

= 1
1+χiω̄

, (i = 1, 2, 3), (A.13)

are introduced here, in which

χ1 = 1

2
, χ2 = 1

2

(
1 + 9γζ

1 − γ

)
, χ3 = 3γζ(1 + νr)

1 − γ
. (A.14)

9. Appendix B

The Laplace-Carson transform can be used to determine the functions �(t) and gχi
(t) as given

in (37) and (38). Denoting the transforms of �(t) and gχi
(t) by �∗(s) and g∗

χi
(s), respectively,

we may deduce the Laplace-Carson transform of ω(t) as follows:

ω∗(s) = s

∫ ∞

0
ω(t)e−stdt . (B.1)

Using (34), one obtains

ω∗(s) = s

∫ ∞

0

(
c1e−st + c2e−(s+1/ts)t

)
dt , (B.2)

or

ω∗(s) = c1 + c2
s

s + 1/st

. (B.3)

But we have

�∗(s) = 1

ω∗(s)
= 1

c1 + c2s/(s + 1/ts)
, (B.4)

or

�∗(s) = 1

c1

(
1 − c3

s

s + c4

)
, (B.5)
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where

c3 = c2

c1 + c2
, c4 = c1

(c1 + c2)ts
. (B.6)

Then we can find the function �(t) by using the inverse Laplace-Carson transform of (B.5) in
the form

�(t) = 1

c1

(
1 − c3e

−c4t
) = 1

c1

[
1 − c2

c1 + c2
e−c1τ/(c1+c2)

]
, (τ = t/ts). (B.7)

Similarly

g∗
χi

(s) = 1

1 + χiω∗(s)
= 1

1 + χi

[
c1 + c2

(
s

s+1/st

)] , (B.8)

or

g∗
χi

(s) = 1

1 + c1χi

(
1 − c5

s

s + c6

)
, (B.9)

where

c5 = c2χi

1 + (c1 + c2)χi

, c6 = 1 + c1χi

[1 + (c1 + c2)χi]ts . (B.10)

Also the function gχi
(t) can be found by using the inverse Laplace-Carson transform of

(B.9). Then, one obtains

gχi
(t) = 1

1 + c1χi

(
1 − c5e−c6t

)
, (B.11)

or in final form:

gχi
(t) = 1

1 + c1χi

[
1 − c2χi

1 + (c1 + c2)χi

e−(1+c1χi)τ/[1+(c1+c2)χi]
]

. (B.12)
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